A Numerical Integrator for Oscillatory Problems

Main Article Content

Yusuf Dauda Jikantoro
Yahaya Badeggi Aliyu
Aliyu Alhaji Ishaku Ma’ali
Abdulkadir Abubakar
Ismail Musa


Presented here is a numerical integrator, with sixth order of convergence, for solving oscillatory problems. Dispersion and dissipation errors are taken into account in the course of deriving the method. As a result, the method possesses dissipation of order infinity and dispersive of order six. Validity and effectiveness of the method are tested on a number of test problems. Results obtained show that the new method is better than its equals in the scientific literature. 

Dispersion, dissipation, oscillatory problems, differential equations, numerical experiment.

Article Details

How to Cite
Jikantoro, Y. D., Badeggi Aliyu, Y., Ishaku Ma’ali, A. A., Abubakar, A., & Musa, I. (2019). A Numerical Integrator for Oscillatory Problems. Asian Research Journal of Mathematics, 14(1), 1-10. https://doi.org/10.9734/arjom/2019/v14i130119
Original Research Article

Article Metrics


Jikantoro YD, Ismail F, Senu N. Zero-dissipative semi-implicit hybrid method for solving oscillatory or periodic problems. Appl. Math. Comput. 2015;252:388–396.

Al-Khasawneh RA, Ismail F, Suleiman M. Embedded diagonally implicit Runge-Kutta–Nyström 4 (3) pair for solving special second-order IVPs. Appl. Math. Comput. 2007;190:1803–1814.

Bettis DG. A Runge–Kutta–Nyström algorithm. Celestial Mech. 1973;8:229–233.

Butcher JC. Numerical methods for ordinary differential equations. John Wiley & Sons; 2008.

Chawla MM, Al-Zanaidi MA, Boabbas WM. Extended two-step p-stable methods for periodic initial-value problems. Neural, Parallel Sci. Comput. 1996;4:505–521.

Dormand JR, El-Mikkawy MEA, Prince PJ. High-order embedded Runge-Kutta–Nyström formulae. IMA J. Numer. Anal. 1987;7:423–430.

Dormand JR, Prince PJ. A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 1980;6:19–26.

Franco JM. A 5 (3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators. J. Comput. Appl. Math. 2003;161 () 283–293.

Franco JM. A class of explicit two-step hybrid methods for second-order IVPs. J. Comput. Appl. Math. 2006;187:41–57.

Ming Q, Yang Y, Fang Y. An optimized Runge–Kutta method for the numerical solution of the radial Schrödinger equation. Math. Probl. Eng; 2012.

Mohamed M, Senu N, Suleiman M, Ismail F. Fifth order explicit Runge–Kutta Nyström methods for oscillatory problems. World Appl. Sci. J. 2012;17:16–20.

Mohamad M, Senu N, Suleiman M, Ismail F. An embedded 5(4) explicit Runge–Kutta–Nyström with dissipation of higher order. Aip Conf. Proc. 2013;1522:362–369.

Panowsky J, Richardson DL. A family of implicit Chebyshev methods for the numerical integration of second-order differential equations. J. Comput. Appl. Math. 1988;23:35–51.

Papadopoulos DF, Simos TE. A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 2013;7:433–437.

Rabiei F, Ismail F, Norazak S, Seddighi S. Accelerated Runge–Kutta–Nyström method for solving autonomous second-order ordinary differential equations . World Appl. Sci. J. 2012;17:1549–1555.

Ramos H, Vigo-Aguiar J. Variable-stepsize Chebyshev-type methods for the integration of second-order I.V.P.’s. J. Comput. Appl. Math. 2007;204:102–113.

Senu N, Suleiman M, Ismail F. An embedded explicit Runge–Kutta–Nyström method for solving oscillatory problems. Phys. Scr. 2009;80:015005.

Senu N, Suleiman M, Ismail F, Othman M. Kaedah pasangan 4 (3) Runge–Kutta–Kyström untuk masalah nilai awal berkala. Sains Malaysiana. 2010;39:639–646.

Simos TE. Exponentially-fitted Runge–Kutta–Nyström method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 2002;15:217–225.

Simos TE. Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase lag. J. Appl. Math. 2012;1–17.

Simos TE. Explicit eighth order methods for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 1999;119:32–44.

Tsitouras C. Explicit two-step methods for second-order linear IVPs. Comput. Math. Appl. 2002;43: 943–949.

Van der Houwen PJ, Sommeijer BP. Explicit Runge–Kutta–Nyström methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal. 1987;24:595–617.

Vigo-Aguiar J, Ramos H. Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 2003;158:187–211.

Fudziah I, Sufia ZA, Yusuf DJ, Norazak S. 2-Point explicit block hybrid method with trigonometrically-fitting for solving oscillatory problems. Sains Malaysiana. 2018;47:2223–2230.

Jikantoro YD, Yahaya AB, Ma’ali AAI, Abubakar A. Variable step-size two-step hybrid method for solving special second order initial value problems. Journal of the Nigerian Association of Mathematical Physics; 2019. (Accepted)

Coleman JP. Order conditions for a class of two-step methods for . IMA J. Numer. Anal. 2003;23:197–220.

Ahmad SZ, Ismail F, Senu N, Suleiman M. Semi implicit hybrid methods with higher order dispersion for solving oscillatory problems. Abstr. Appl. Anal. 2013;1–10.