A Numerical Integrator for Oscillatory Problems

Main Article Content

Yusuf Dauda Jikantoro
Yahaya Badeggi Aliyu
Aliyu Alhaji Ishaku Ma’ali
Abdulkadir Abubakar
Ismail Musa

Abstract

Presented here is a numerical integrator, with sixth order of convergence, for solving oscillatory problems. Dispersion and dissipation errors are taken into account in the course of deriving the method. As a result, the method possesses dissipation of order infinity and dispersive of order six. Validity and effectiveness of the method are tested on a number of test problems. Results obtained show that the new method is better than its equals in the scientific literature. 

Keywords:
Dispersion, dissipation, oscillatory problems, differential equations, numerical experiment.

Article Details

How to Cite
Jikantoro, Y. D., Badeggi Aliyu, Y., Ishaku Ma’ali, A. A., Abubakar, A., & Musa, I. (2019). A Numerical Integrator for Oscillatory Problems. Asian Research Journal of Mathematics, 14(1), 1-10. https://doi.org/10.9734/arjom/2019/v14i130119
Section
Original Research Article

References

Jikantoro YD, Ismail F, Senu N. Zero-dissipative semi-implicit hybrid method for solving oscillatory or periodic problems. Appl. Math. Comput. 2015;252:388–396.

Al-Khasawneh RA, Ismail F, Suleiman M. Embedded diagonally implicit Runge-Kutta–Nyström 4 (3) pair for solving special second-order IVPs. Appl. Math. Comput. 2007;190:1803–1814.

Bettis DG. A Runge–Kutta–Nyström algorithm. Celestial Mech. 1973;8:229–233.

Butcher JC. Numerical methods for ordinary differential equations. John Wiley & Sons; 2008.

Chawla MM, Al-Zanaidi MA, Boabbas WM. Extended two-step p-stable methods for periodic initial-value problems. Neural, Parallel Sci. Comput. 1996;4:505–521.

Dormand JR, El-Mikkawy MEA, Prince PJ. High-order embedded Runge-Kutta–Nyström formulae. IMA J. Numer. Anal. 1987;7:423–430.

Dormand JR, Prince PJ. A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 1980;6:19–26.

Franco JM. A 5 (3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators. J. Comput. Appl. Math. 2003;161 () 283–293.

Franco JM. A class of explicit two-step hybrid methods for second-order IVPs. J. Comput. Appl. Math. 2006;187:41–57.

Ming Q, Yang Y, Fang Y. An optimized Runge–Kutta method for the numerical solution of the radial Schrödinger equation. Math. Probl. Eng; 2012.

Mohamed M, Senu N, Suleiman M, Ismail F. Fifth order explicit Runge–Kutta Nyström methods for oscillatory problems. World Appl. Sci. J. 2012;17:16–20.

Mohamad M, Senu N, Suleiman M, Ismail F. An embedded 5(4) explicit Runge–Kutta–Nyström with dissipation of higher order. Aip Conf. Proc. 2013;1522:362–369.

Panowsky J, Richardson DL. A family of implicit Chebyshev methods for the numerical integration of second-order differential equations. J. Comput. Appl. Math. 1988;23:35–51.

Papadopoulos DF, Simos TE. A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 2013;7:433–437.

Rabiei F, Ismail F, Norazak S, Seddighi S. Accelerated Runge–Kutta–Nyström method for solving autonomous second-order ordinary differential equations . World Appl. Sci. J. 2012;17:1549–1555.

Ramos H, Vigo-Aguiar J. Variable-stepsize Chebyshev-type methods for the integration of second-order I.V.P.’s. J. Comput. Appl. Math. 2007;204:102–113.

Senu N, Suleiman M, Ismail F. An embedded explicit Runge–Kutta–Nyström method for solving oscillatory problems. Phys. Scr. 2009;80:015005.

Senu N, Suleiman M, Ismail F, Othman M. Kaedah pasangan 4 (3) Runge–Kutta–Kyström untuk masalah nilai awal berkala. Sains Malaysiana. 2010;39:639–646.

Simos TE. Exponentially-fitted Runge–Kutta–Nyström method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 2002;15:217–225.

Simos TE. Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase lag. J. Appl. Math. 2012;1–17.

Simos TE. Explicit eighth order methods for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 1999;119:32–44.

Tsitouras C. Explicit two-step methods for second-order linear IVPs. Comput. Math. Appl. 2002;43: 943–949.

Van der Houwen PJ, Sommeijer BP. Explicit Runge–Kutta–Nyström methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal. 1987;24:595–617.

Vigo-Aguiar J, Ramos H. Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 2003;158:187–211.

Fudziah I, Sufia ZA, Yusuf DJ, Norazak S. 2-Point explicit block hybrid method with trigonometrically-fitting for solving oscillatory problems. Sains Malaysiana. 2018;47:2223–2230.

Jikantoro YD, Yahaya AB, Ma’ali AAI, Abubakar A. Variable step-size two-step hybrid method for solving special second order initial value problems. Journal of the Nigerian Association of Mathematical Physics; 2019. (Accepted)

Coleman JP. Order conditions for a class of two-step methods for . IMA J. Numer. Anal. 2003;23:197–220.

Ahmad SZ, Ismail F, Senu N, Suleiman M. Semi implicit hybrid methods with higher order dispersion for solving oscillatory problems. Abstr. Appl. Anal. 2013;1–10.