Hyperbolic Jacobsthal Numbers

Main Article Content

Can Murat Dikmen

Abstract

In this paper, we introduce the Hyperbolic Jacobsthal numbers and we present recurrence relations, Binet's formulas, generating functions and the summation formulas for these numbers. Moreover, we investgate Lorentzian inner product for the hyperbolic Jacobsthal vectors.

Keywords:
Jacobsthal numbers, hyperbolic numbers, hyperbolic jacobsthal numbers.

Article Details

How to Cite
Dikmen, C. M. (2019). Hyperbolic Jacobsthal Numbers. Asian Research Journal of Mathematics, 15(4), 1-9. https://doi.org/10.9734/arjom/2019/v15i430153
Section
Original Research Article

References

Horadam AF, Basic properties of a certain generalized sequence of numbers. Fibonacci Quarterly. 1965;3(3):161-176.

Atanassov K. Remark on Jacobsthal numbers, Part 2. Notes on Number Theory and Discrete Mathematics. 2011;17(2):37-39.

Atanassov K. Short remarks on Jacobsthal numbers. Notes on Number Theory and Discrete Mathematics. 2012;18(2):63-64.

Horadam AF. Jacobsthal represantation numbers. Fibonacci Quarterly. 1996;34:40-54.

Horadam AF. Jacobsthal and Pell curves. Fibonacci Quarterly. 1988;26:79-83.

Horadam AF. Jacobsthal represantation polynomials. Fibonacci Quarterly. 1997;35:137-148.

Torunbalc Aydn F, Yuce S. A new approach to Jacobsthal quaternions. Filomat. ;31(18):5567-5579.

Sloane NJA. A handbook of integer sequences. Academic Press; 1973.

Catoni F, Boccaletti R, Cannata R, Catoni V, Nichelatti E, Zampatti P. The mathematics of

Minkowski space-time. Birkhauser, Basel; 2008.

Gargoubi H, Kossentini S. f-algebra structure on hyperbolic Numbers. Adv. Appl. Cliord Algebr. 2016;26(4):1211-1233.

Motter AE, Rosa AF. Hyperbolic calculus. Adv. Appl. Cliord Algebr. 1998;8(1):109-128.

Jancewicz B. The extended Grassmann algebra of R3, in Cliord (Geometric) algebras with applications and engineering. Birkhauser, Boston. 1996;389-421.

Khadjiev D, Goksal Y. Applications of hyperbolic numbers to the invariant theory in twodimensional pseudo-Euclidean space. Adv. Appl. Cliord Algebr. 2016;26:645-668.

Guncan AN, Erbil Y. The q-Fibonacci hyperbolic functions, Appl. Math. Inf. Sci.;8(1L):81-88.

Barreira L, Popescu LH, Valls C. Hyperbolic sequences of linear operators and evolution maps. Milan J. Math. 2016;84:203-216.

Torunbalc Aydn F. Hyperbolic bonacci sequence. Universal Journal of Mathematics and Applications, Cilt 2, Say 2. 2019;59-62.

Torunbalc Aydn F. On generalisations of the Jacobsthal Sequence. Notes on Number Theory and Discrete Mathematics. 2018;24(1):120-135.

Horadam AF. Jacobsthal representation numbers. Fib. Quart. 1996;34:40-54.

Hogatt VE JR., Marjorie Bicknell-Johnson. Convolution arrays for jacobsthal and bonacci polynomials. The Fibonacci Quarterly. 1978;385-402.

Ratclie JG. Foundations of hyperbolic manifolds. Springer-Verlag; 1994.

Cihan A, Azak AZ, Gungor MA, Tosun M. A Study on dual hyperbolic bonacci and lucas numbers. An.St. Univ. Ovidius Constanta. 2019;27(1):35-48.

Soykan Y. On dual hyperbolic generalized bonacci numbers. Preprints; 2019. 2019100172
DOI: 10.20944/preprints201910.0172.v1