Optimal Bounds of the Arithmetic Mean by Harmonic, Contra-harmonic and New Seiffert-like Means

Main Article Content

Hui-Zuo Xu
Wei-Mao Qian

Abstract

We provide the optimal bounds for the arithmetic mean in terms of harmonic, contra-harmonic and new Seiffert-like means.

Keywords:
Seiffert-like mean, arithmetic mean, harmonic mean, contra-harmonic mean.

Article Details

How to Cite
Xu, H.-Z., & Qian, W.-M. (2020). Optimal Bounds of the Arithmetic Mean by Harmonic, Contra-harmonic and New Seiffert-like Means. Asian Research Journal of Mathematics, 16(6), 30-36. https://doi.org/10.9734/arjom/2020/v16i630195
Section
Original Research Article

References

Seiert HJ. Werte zwischen dem geometrischen und dem arithmetischen Mittel zweier Zahlen.
Elem. Math. 1987;42(4):105-107.

Seiert HJ. Aufgabe β 16. Die Wurzel. 1995;29(9+10):221-222.

Witkowski A. On Seiert-like means. J. Math. Inequal. 2015;4(9):1071-1092.

Nowicka M, Witkowski A. Optimal bounds for the tangent and hyperbolic sine means, Aequat.
Math; 2020.
Available:https://doi.org/10.1007/s00010-020-00705-6

Nowicka M, Witkowski A. Optimal bounds for the tangent and hyperbolic sine means. J. Math.
Inequal. 2020;14(1):23-32.

Nowicka M, Witkowski. Optimal bounds for the arithmetic mean in terms of new Seiert-like means. Math. Inequal. Appl. 2020;23(1):383-392.

Chu YM, Zong C, Wang GD. Optimal convex combination bounds of Seiert and geometric means for the arithmetic mean. J. Math. Inequal. 2011;5(3):429-434.

Yang F, Chu YM, Qian WM. Bounds for the arithmetic mean in terms of the neuman-sndor and other bivariate means. Journal of Applied Mathematics. 2013;7. Article ID 582504
Availabe:http://dx.doi.org/10.1155/2013/582504