Topological Near Groups

A. Maheswari \(^a\) and Gnanambil Ilango \(^a\)

\(^a\)Department of Mathematics, Government Arts College (Autonomous), Coimbatore, Tamil Nadu, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARJOM/2022/v18i12624

Received: 01/10/2022
Accepted: 02/12/2022
Published: 07/12/2022

Abstract

Aims/ Objectives: The concept of topological group is a simple combination of the concepts of abstract group and topological space. The purpose of this paper is to combine the concepts of topological space and near groups to define topological near groups on an nearness approximation space and study its properties.

Keywords: Near sets; near group; sub near group; topological group; topological near group.

2010 Mathematics Subject Classification: 03E99, 20A05, 20E99.

1 Introduction

The theory of rough sets, proposed by Pawlak [1] in 1982 is a powerful mathematical tool for "uncertain data while modelling the problems in computer science, medical science, data analysis and many other diverse fields [2,3,4]. The theory of rough sets is an extension of set theory, in which a subset of a universe is "described by a pair of ordinary sets the lower and upper approximations. A basic notion in the pawlak rough set model is an equivalence relation. The equivalence classes ar the building blocks for the construction of the lower and
upper approximations. The lower approximation of a given set is the union of all the equivalence classes which are subsets of the set, and the upper approximation is the union of all the equivalence classes which have a non-empty intersection with the set.

An algebraic approach to rough sets has been studied by Iwinski [5]. The notion of rough subgroup was introduced by Biswas and Nanda [6]. On the other hand, Kuroki and Wang [7] gave some properties of the lower and upper approximation with respect to normal subgroup and Davvaz [8] introduced the notion of rough subring (respectively ideal) with respect to an ideal of ring. In 2002, J.F.Peters developed the near set theory as a generalization of rough set theory. Peters utilized the features of object to develop the nearness of objects [9] and consequently, the classification of our universal, set with respect to the object information available [10,11,12]. The concept of near set theory was motivated by image analysis and inspired by a study of the perception of the nearness of familiar physical objects was carried out in cooperation with pawlak in 2007 [13]. The near set approach leads to partitions of ensembles of sample objects with measurable information content and an approach to feature selection [14,15]. A probe function is a real valued function representing a feature of physical objects such as images or behaviours of individual biological organisms [16-18].

The main objective of this paper is to introduce topological near groups, which extends the notion of a topological group to include the algebraic structures of near groups. In section 2, some basic notions of near sets, near groups and topological groups are given. In Section 3, new definition of topological near group is introduced and its properties are given; and some examples for topological near groups are also discussed. In section 4, topological near normal subgroup is defined and some properties of it are proved [19].

2 Preliminaries

In this section, some definitions and results about near sets, near groups and topological groups used in this paper are given

2.1 Object description [20]

Objects are known by their description. An object description is defined by means of a tuple of function values \(\psi(x) \) associated with an object \(x \in X \). The important thing to notice is the choice of functions \(\psi_i \in B \) used to describe an object of interest.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{R})</td>
<td>Set of real numbers</td>
</tr>
<tr>
<td>(O)</td>
<td>Set of perceptual objects</td>
</tr>
<tr>
<td>(X)</td>
<td>(X \subseteq O), set of sample objects</td>
</tr>
<tr>
<td>(x)</td>
<td>(x \in O), sample perceptual object</td>
</tr>
<tr>
<td>(F)</td>
<td>A set of functions representing object features,</td>
</tr>
<tr>
<td>(B)</td>
<td>(B \subseteq F), set of functions representing object features</td>
</tr>
<tr>
<td>(\psi)</td>
<td>(\psi : O \rightarrow \mathbb{R}^L), object description</td>
</tr>
<tr>
<td>(L)</td>
<td>(L) is a description length</td>
</tr>
<tr>
<td>(i)</td>
<td>(i \leq L)</td>
</tr>
<tr>
<td>(\psi_i)</td>
<td>(\psi_i \in B), where (\psi_i : X \rightarrow \mathbb{R}), probe function,</td>
</tr>
<tr>
<td>(\psi(x))</td>
<td>(\psi(x)=(\psi_1(x), \psi_2(x), \psi_3(x), \ldots, \psi_i(x), \ldots, \psi_L(x))).</td>
</tr>
</tbody>
</table>

The intuition underlying a description \(\psi(x) \) is recording of measurements from sensors, where each sensor is modelled by a function \(\psi_i \). Assume that \(B \subseteq F \) is a given set of functions representing features of sample objects.
X ∈ O. Let φi ∈ B, where φi : O → ℜ. The value of ψi(x) is a measurement associated with a feature of an object x ∈ X. The function ψi is called a probe. In combination, the functions representing object features provide a basis for an object description ψ : O → ℜL, a vector containing measurements (returned values) associated with each functional value ψi(x), where the description length |ψ| = L.

Object Description: ψ(x) = (ψ1(x), ψ2(x), ..., ψi(x), ..., ψL(x))

2.2 Nearness objects [20]

Sample objects X ⊆ O are near each other if, and only if the objects have similar descriptions. Recall that each description ψi defines a description of an object. Then let ∆ψi denote

\[∆ψi = ψi(x') - ψi(x), \]

where x, x' ∈ O. The difference ∆ψ leads to a definition of the indiscernibility relation ∼B introduced by Zdzislaw Pawlak [21].

Table 2. Set, relation, probe function symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>∼B</td>
<td>{ (x, x')</td>
</tr>
<tr>
<td>[x]B</td>
<td>{ x ∈ X</td>
</tr>
<tr>
<td>O/ ∼B</td>
<td>O/ ∼B = { [x]B</td>
</tr>
<tr>
<td>ξB</td>
<td>Partition ξB = O/ ∼B</td>
</tr>
<tr>
<td>∆ψi</td>
<td>∆ψi = ψi(x') - ψi(x). probe function difference</td>
</tr>
</tbody>
</table>

Definition 2.1. [22] Let x, x' ∈ O, B ⊆ F. Then

\[∼B = \{ (x, x') ∈ O × O | ∀ ψi ∈ B, ∆ψi = 0 \} \]

is called the indiscernibility relation on O, where the description length i ≤ |ψ|.

Definition 2.2. [22] Let B ⊆ F be a set of functions representing features of objects x, x' ∈ O. Objects x, x' are called minimally near each other if there exists ψi ∈ B such that x ∼B(x', x), ∆ψi = 0.

Definition 2.3. [22] Let X, X' ⊆ O, B ⊆ F. Set X is near X' if and only if there exists x ∈ X, x' ∈ X', ψi ∈ B such that x ∼B(x', x).

[22] If X is near X', then X is a near set relative to X' and X' is a near set relative to X.

Definition 2.4. [22] Let X ⊆ O and x, x' ∈ X. If x is near x', then X is called a near set relative to itself or the reflexive nearness of X.

Theorem 2.1. [22] The objects in a class [x]B ∈ ξB are near objects.

Definition 2.5. [22] Let (O, F, ∼B, Nr, νN) be a nearness approximation space and let ‘∼’ be a binary operation defined on O. Let x ∈ O and Bx ⊆ F, r ≤ |B|. An indiscernibility relation ∼Br on O is called a complete indiscernibility relation ∼B, on perceptual objects O, if [x]Br, [y]Br = [xy]Br for all x, y ∈ X. A nearness approximation space (NAS) is a tuple \(\text{NAS} = (O, F, ∼B, N_r, \nu_N) \) where the approximation space NAS is defined with a set of perceived objects O, set of prob functions F representing object features, indiscernibility relation ∼Br, defined relative to Br ⊆ B ⊆ F collection of partitions (families of neighbourhoods N_r(B), and overlap function \(\nu_N \).
Theorem 2.2. [20] Let \((O, F, N_r, \nu_{N_r})\) be a nearness approximation space and \(X, Y \subseteq O\), then the following statement hold:

1. \(N_r(B)_*(X) \subseteq X \subseteq N_r(B)^*(X)\)
2. \(N_r(B)^*(X \cup Y) = N_r(B)^*(X) \cup N_r(B)^*(Y)\)
3. \(N_r(B)_*(X \cap Y) = N_r(B)_*(X) \cap N_r(B)_*(Y)\)
4. \(X \subseteq Y\) implies \(N_r(B)_*(X) \subseteq N_r(B)_*(Y)\)
5. \(X \subseteq Y\) implies \(N_r(B)^*(X) \subseteq N_r(B)^*(Y)\)
6. \(N_r(B)^*(X \cup Y) \supseteq N_r(B)_*(X) \cup N_r(B)_*(Y)\)
7. \(N_r(B)_*(X \cap Y) \subseteq N_r(B)^*(X) \cap N_r(B)^*(Y)\)

Definition 2.6. [23] A topological group is a group \((G, \ast)\) together with a topology on \(G\) that satisfies the following two properties:

1. The mapping \(f : G \times G \to G\) defined by \(f(x, y) = xy\) is continuous when \(G\) is endowed with the product topology.
2. The inverse mapping \(g : G \to G\) defined by \(g(x) = x^{-1}\) is continuous.

We remark that item (1) is equivalent to the statement that, whenever \(W \subseteq G\) is open, and \(W \subseteq N(x_1, x_2)\), then there exists open sets \(V_1\) and \(V_2\) such that \(V_1 \in N(x_1); V_2 \in N(x_2)\) and \(V_1V_2 = \{x_1x_2/x_1 \in V_1; x_2 \in V_2\} \subseteq W\).

Also, item (2) is equivalent to showing that whenever \(V \subseteq G\) is open, then \(V^{-1} = \{x^{-1}|x \in V\} \subseteq N(x^{-1})\) is open.

Let \(G\) be a topological group and let \(H\) be a subgroup of \(G\). Then \(H\) becomes a topological group when endowed with the topology induced by \(G\).

Definition 2.7. [20] Let \(NAS=(O, F, \sim_{B_r}, N_r, \nu_{N_r})\), be a nearness approximation space and let \(\cdot\) be a binary operation defined on \(O\). A subset \(G\) of perceptual objects \(O\) is called a near group if the following properties are satisfied:

1. \(\forall x, y \in G, x \cdot y \in N_r(B)^*G\)
2. \(\forall x, y, z \in G, (x \cdot y) \cdot z = x \cdot (y \cdot z)\) property holds in \(N_r(B)^*G\).
3. \(\exists e \in N_r(B)^*G\) such that \(\forall x \in G, x \cdot e = e \cdot x = x, e\) is called the near identity element of the group \(G\).
4. \(\forall x \in G, \exists y \in G\) such that \(x \cdot y = y \cdot x = e, y\) is called the near inverse element of \(x\) in \(G\).

Proposition 2.1. [20] Let \(G\) be a near group

1. \(\forall x, y \in H, x \cdot y \in N_r(B)^*H\)
2. \(\forall x \in H, x^{-1} \in H\)
3. There is one and only one identity element in near group \(G\).
4. \(\forall x \in G, \exists y\) such that \(x \cdot y = y \cdot x = e;\) we denote it by \(x^{-1}\).
5. \((x^{-1})^{-1} = x\).
6. \((x \cdot y)^{-1} = y^{-1} \cdot x^{-1}\).

Proposition 2.2. [20] Let \(G\) be a near group. For all \(a, x, x', y, y' \in G\)

1. If \(a \cdot x = a \cdot x'\) then \(x = x'\).
2. If \(y \cdot a = a \cdot y^{-1}\) then \(y = y'\).

Definition 2.8. [20]
A nonempty subset \(H\) of a near group \(G\) is called its sub neargroup, it it is itself a near group with respect to the operation \(\cdot\).

The only guaranteed trivial sub neargroup of near group \(G\) is \(G\) itself. A necessary and sufficient condition for \(\{e\}\) to be a trivial sub neargroup \(G\) is \(e \in G\).

Definition 2.9. [20] A necessary and sufficient condition for a subset \(H\) of near group \(G\) to be a sub neargroup is that:
(i) $\forall x, y \in H, xy \in N_r(B)^*H$,
(ii) $\forall x \in H, X^{-1} \in H$.

Definition 3.1. A topological near group is a near group (G, \ast) together with a topology τ on $N_r(B)^*G$ satisfying the following two properties,
(a) $f : G \times G \to N_r(B)^*G$ defined by $f(a, b) = ab$ is continuous with respect to product topology on $G \times G$ and the topology τ_G on G induced by τ.
(b) $g : G \to G$ defined by $g(a) = a^{-1}$ is continuous with respect to the topology τ_G on G induced by τ.

3 Topological Near Group

Definition 2.10. A sub neargroup N of a near group G is called a normal sub neargroup if $a \cdot N = N \cdot a$ for all $a \in G$.

Let $X = \{0, 1, 2, 3\}$ be a set of perceptual objects, $B = \{\psi_1, \psi_2, \psi_3\}$ be a set of functions with respect to addition modulo 4 and (\ast) be a binary operation. Sample values of the probe function $\{\psi_i\}$ are defined as,

<table>
<thead>
<tr>
<th>ψ_i</th>
<th>X → V_i defined by $\psi_i(n) = n(n-1)$, $\forall n \in X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_1</td>
<td>$X \to V_1$ defined by $\psi_1(n) = n(n-1)$, $\forall n \in X$</td>
</tr>
<tr>
<td>ψ_2</td>
<td>$X \to V_2$ defined by $\psi_2(n) = n(n-1)(n-2)$, $\forall n \in X$</td>
</tr>
<tr>
<td>ψ_3</td>
<td>$X \to V_3$ defined by $\psi_3(n) = n(n-1)(n-2)(n-3)$, $\forall n \in X$</td>
</tr>
</tbody>
</table>

Let us construct the equivalence classes for each combination, these equivalence classes are defined as

$[0]_{\psi_1} = \{x' \in X | \psi_1(x') = \psi_1(0) = 0\}$,
$= \{0, 1\}$

$[2]_{\psi_1} = \{x' \in X | \psi_1(x') = \psi_1(2) = 2\}$,
$= \{2\}$

$[3]_{\psi_1} = \{x' \in X | \psi_1(x') = 3\}$,
$= \{3\}$

Hence we have $\xi_{\psi_1} = \{[0]_{\psi_1}, [2]_{\psi_1}, [3]_{\psi_1}\}$

$[0]_{\psi_2} = \{x' \in X | \psi_2(x') = \psi_2(0) = 0\}$,
$= \{0, 1, 2\}$

$[3]_{\psi_2} = \{x' \in X | \psi_2(x') = \psi_2(3) = 3\}$,
$= \{3\}$

Thus $\xi_{\psi_2} = \{[0]_{\psi_2}, [3]_{\psi_2}\}$

$[0]_{\psi_3} = \{x' \in X | \psi_3(x') = \psi_3(0) = 0\}$,
$= \{0, 1, 2, 3\}$

Therefore as $\xi_{\psi_3} = \{[0]_{\psi_3}\}$

Therefore, for $r = 1$ a classification of X is

$N_1(B) = \{\xi_{\psi_1}, \xi_{\psi_2}, \xi_{\psi_3}\}$ Then,

$N_1(B)^*G = \bigcup_{x, [x]_{\psi_i}} [x]_{\psi_i}$
= \{\{0,1\} \cup \{2\} \cup \{3\} \cup \{0,1,2\} \cup \{3\} \cup \{0,1,2,3\}\}
= \{0,1,2,3\}

From Definition
(1) \forall a, b \in G, ab \in N_r(B)^*(G)
(2) The Property \forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c) holds in N_r(B)^*(G)
(3) \exists a \in N_r(B)^*(G) such that \forall a \in G, a \cdot 0 = 0 \cdot a = a
(4) \forall a \in G, \exists b \in G such that a \cdot b = b \cdot a = e (b is called a near inverse of a in G)

G is a near group

Let \(\tau = \{\emptyset, N_r(B)^*(G), \{1\}, \{2\}, \{3\}, \{2,3\}, \{1,3\}, \{1,2\}, \{1,2,3\}\}\) on \(N_r(B)^*(G)\)

Then, \(\tau_0 = \{\emptyset, G, \{1\}, \{2\}, \{3\}, \{2,3\}, \{1,3\}, \{1,2\}\}\) is the relative topology \(\tau_0\)

From Def (3.1)
(a) \(1 \cdot 1 = 2\), for \(T \in N(2) \subseteq \tau\), there exist open set
\(U = \{1\} \in N(1) \subseteq \tau_0\), such that \(UU \subseteq T\)
\(2 \cdot 2 = 0\), for \(T \in N(0) \subseteq \tau\), there exist open set
\(U = \{2\} \in N(2) \subseteq \tau_0\), such that \(UU \subseteq T\)
\(3 \cdot 3 = 2\), for \(T \in N(2) \subseteq \tau\), there exist open set
\(U = \{3\} \in N(3) \subseteq \tau_0\), such that \(UU \subseteq T\)
\(2 \cdot 3 = 1\), for \(T \in N(1) \subseteq \tau\), there exist open set
\(U = \{2\} \in N(2) \subseteq \tau_0\), and
\(V = \{3\} \in N(3) \subseteq \tau_0\) such that \(UV \subseteq T\)
\(1 \cdot 3 = 0\), for \(T \in N(0) \subseteq \tau\), there exist open set
\(U = \{1\} \in N(1) \subseteq \tau_0\), and
\(V = \{3\} \in N(3) \subseteq \tau_0\) such that \(UV \subseteq T\)

(b) \(\{1\}^{-1} = \{3\}\) is open
\(\{2\}^{-1} = \{2\}\) is open
\(\{3\}^{-1} = \{1\}\) is open
\(\{2,3\}^{-1} = \{2,1\}\) is open
\(\{1,3\}^{-1} = \{3,1\}\) is open
\(\{1,2\}^{-1} = \{3,2\}\) is open

Therefore \(G\) is a topological near group.

Proposition 3.1. Let \(G\) be a topological near group. If \(G = N_r(B)^*G\), then \(G\) is topological group.

Proof. Let \(G\) be a topological near group and \(G = N_r(B)^*G\)
(1) we have \(\forall a, b \in G\), \(a \cdot b \in N_r(B)^*G = G\)
(2) \(\forall a, b, c \in G\); \((ab)c = a(bc)\), association property holds in \(N_r(B)^*G = G\)
(3) \(\exists a \in N_r(B)^*G\) such that \(\forall a \in G, a \cdot 0 = 0 \cdot a = a\) (0 is the near identity element of the near group \(G\). As \(N_r(B)^*G = G, 0 \in G\)
(4) \(\forall a \in G, \exists b \in G\) such that \(a \cdot b = b \cdot a = e\) (\(b\) is called a near inverse of \(a\) in \(G\))

Therefore \(G\) is a group.

Since \(G\) is a topological near group and \(G = N_r(B)^*G\), we have the maps
(a) \(f : G \times G \rightarrow G\) defined by \(G f(a, b) = ab\) is continuous
(b) \(g : G \rightarrow G\), defined by \(a = a^{-1}\) is continuous

Hence \(G\) is a topological group.
Definition 3.2. Let G be a topological near group. For a fixed element a in G, we define
(i) A mapping $L_a : G \rightarrow N_r(B)^*G$ which is defined by $L_a(x) = ax$ is called left transformation from G into $N_r(B)^*G$.
(ii) A mapping $R_a : G \rightarrow N_r(B)^*G$ which is defined by $R_a(x) = xa$ is called right transformation from G into $N_r(B)^*G$.

Proposition 3.2. Let G be a topological near group and fix $a \in G$. Then,
(i) The map $L_a : G \rightarrow N_r(B)^*G$ defined by $L_a(x) = ax$ is one-to-one and continuous, for every $x \in G$.
(ii) The map $R_a : G \rightarrow N_r(B)^*G$ defined by $R_a(x) = xa$ is one-to-one and continuous, for every $x \in G$.
(iii) The map $f : G \rightarrow G$ defined by $f(a) = a^{-1}$ is a homeomorphism for every $a \in G$.

Proof. (i) For every $x_1, x_2 \in G$,
\[L_a(x_1) = L_a(x_2) \]
\[\Rightarrow ax_1 = ax_2 \]
\[\Rightarrow a^{-1}(ax_1) = a^{-1}(ax_2) \]
\[\Rightarrow (a^{-1})x_1 = (a^{-1})x_2 \]
\[\Rightarrow x_1 = x_2 \]
Hence L_a is one-to-one.

Let $T \in N(ax) \subseteq N_r(B)^*G$. By definition of topological near group $\exists U \in N(a) \subseteq \tau_G$ and $V \in N(x) \subseteq \tau_G$ such that $UV \subseteq T$. Since $aV \subseteq UV \subseteq T$. $L_a(V) = aV \subseteq T$. Therefore L_a is continuous on x. Since x is an arbitrary element of G, then L_a is continuous on G.

(ii) For every $x_1, x_2 \in G$,
\[R_a(x_1) = R_a(x_2) \]
\[\Rightarrow x_1a = x_2a \]
\[\Rightarrow (x_1a)a^{-1} = (x_2a)a^{-1} \]
\[\Rightarrow x_1(aa^{-1}) = x_2(aa^{-1}) \]
\[\Rightarrow x_1 = x_2 \]
Hence R_a is one-to-one.

Let $T \in N(xa) \subseteq N_r(B)^*G$. By definition of topological near group $\exists U \in N(a) \subseteq \tau_G$ and $V \in N(x) \subseteq \tau_G$ such that $UV \subseteq T$. Since $Va \subseteq UV \subseteq T$. $R_a(V) = Va \subseteq T$. Therefore R_a is continuous on x. Since x is an arbitrary element of G, then R_a is continuous on G.

(iii) The map $f : G \rightarrow G$ defined by $f(a) = a^{-1}$ is one-to-one and onto, sine inverse element is unique in a group G. By definition of topological near group f is continuous. The continuity of the inverse mapping $f^{-1} : G \rightarrow G$ defined by, $f^{-1}(a) = a^{-1}$ also holds good.

Therefore f is a homeomorphism.

The map L_a and R_a defined previously are not onto. Furthermore, the maps L_a and R_a are not open. Let $G = \{1, 2, 3\}$,
\[\tau = \{\emptyset, N_r(B)^*(G), \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\} \] and,
\[\tau_G = \{\emptyset, G, \{1\}, \{2\}, \{3\}, \{1, 3\}, \{1, 2\}, \{2, 3\}\} \] from the Example 3.2 $2 \in G$ and $V \in \{2\} \subseteq \tau_G$. Thus $V \subseteq \tau_G$ is open, but then $L_2(\{2\}) = 2 + 2 = \{0\}$ is not open in τ.

Proposition 3.3. Let G be a topological near group and $V \subseteq G$. Then V is open (Closed) $\iff V^{-1}$ is open (Closed).

Proof. Let V be open in G. By Proposition 3.2, $f : G \rightarrow G$ defined by $f(a) = a^{-1}$ is a homeomorphism. (i.e.) $f : G \rightarrow G$ and $f^{-1} : G \rightarrow G$ are continuous. $f(V) = V^{-1}$ is open in G. Similarly, if V^{-1} is open $\Rightarrow f^{-1}(V^{-1}) = V$ is open in G. Hence V is open in G $\iff V^{-1}$ is open in G.

□
Proposition 3.4. Let G be a topological near group. Let $G, \{e\} \in N_r(B)^*G$ be open subsets of $N_r(B)^*G$.
(i) If $e \in G, \{e\} \cap G = \{e\} \subseteq \tau_G$. Therefore $\{e\}$ is open in space G.
(ii) If $e \notin G, \text{then there exists an open subset } V \subseteq G \text{ such that } V = V^{-1}$.

Proof. (i) Let $e \in G$. Since $f : G \times G \to N_r(B)^*G$ is continuous, $f^{-1}(\{e\})$ is open in $G \times G$ and $ee = e \in \{e\} \in \tau \exists$ open sets $V_1, V_2 \in G$ with $e \in V_1, e \in V_2$ with $V_1V_2 \subseteq \{e\} \in N(e)$.

(ii) Let $e \notin G$. Since G is a topological near group and $\{e\} \subseteq N_r(B)^*G$ is an open subset, then from definition of topological near group $f^{-1}(\{e\})$ is open in $G \times G$. So $\forall a, b \in G, ab = e, \exists$ open sets $V_1 \in N(a)$ and $V_2 \in N(b)$ such that $V_1V_2 \subseteq \{e\} \in N(e)$.

Proposition 3.5. Let G be a topological near group and $T \subseteq N_r(B)^*G$ be an open subset with $e \in T$. Then there exists an open set V, with $e \in V$ such that $V = V^{-1}$ and $VV \subseteq T$.

Proof. Since $f : G \times G \to N_r(B)^*G$ is continuous, $f^{-1}(T)$ is open in $G \times G$ and $ee = e \in \tau \exists$ open sets $V_1 \in N(a)$ and $V_2 \in N(b)$ such that $V_1V_2 \subseteq \{e\} \in N(e)$.

4 Topological Sub Neargroup and Topological Normal Sub Neargroup

In this section we introduce the concept of topological sub neargroup and topological normal sub neargroup. We consider the relative topology on a sub neargroup

Definition 4.1. Let G be a topological near group and let A be a subgroup of G. Then, A is called a topological sub neargroup of G if

1. $f_A : A \times A \to N_r(B)^*A$ defined by $f_A(a, b) = ab$ is continuous where the topology on $N_r(B)^*A$ is topology induced by $N_r(B)^*G$.
2. $g_A : A \to A$ defined by $g_A(a) = a^{-1}$ is continuous.

Proposition 4.1. Let A_1 and A_2 be two topological sub neargroups of the topological near group G. A sufficient condition for intersection of two topological sub neargroups of a topological neargroup to be a topological sub neargroup is $N_r(B)^*(A_1) \cap N_r(B)^*(A_2) = N_r(B)^*(A_1 \cap A_2)$.

Proof. Suppose A_1 and A_2 are two topological sub neargroups of G. It is obvious that $A_1 \cap A_2 \subseteq G$. Let $a, b \in A_1 \cap A_2$. Because A_1 and A_2 are sub neargroups, we have $ab \in N_r(B)^*(A_1), ab \in N_r(B)^*(A_2)$ and $a^{-1} \in A_1, b^{-1} \in A_2$, i.e. $ab \in N_r(B)^*(A_1) \cap N_r(B)^*(A_2)$ and $a^{-1} \in A_1 \cap A_2$. Assuming $N_r(B)^*(A_1) \cap N_r(B)^*(A_2) = N_r(B)^*(A_1 \cap A_2)$, we have $ab \in N_r(B)^*(A_1 \cap A_2)$ and $a^{-1} \in A_1 \cap A_2$. Thus $A_1 \cap A_2$ is a sub neargroup of G.

Proposition 4.2. If $f : G \times G \to N_r(B)^*G$ defined by $f(a, b) = ab$ is continuous, and A is a sub neargroup of G. Then its restriction $f_A : A \times A \to N_r(B)^*A$ defined by $f_A(a, b) = ab$ is continuous.

Proof. Let $T \subseteq N_r(B)^*A$ be open, and $T \in N_A(a, b)$. Then $T = T' \cap A, T'$ is open in $N_r(B)^*G$ and $T' = N_G(a, b)$. For every $V_1 \in N_G(a)$ and $V_2 \in N_G(b) \Rightarrow V_1V_2 \subseteq T'$. Therefore f is continuous. $V_1 \cap A = V_1 \in N_A(a)$ and $V_2 \cap A = V_2 \in N_A(b) \Rightarrow V_1V_2 \subseteq N_r(B)^*A, V_1V_2 = (V_1 \cap A)(V_2 \cap A) \subseteq V_1V_2 \subseteq T \cap A = T$. Therefore $f_A : A \times A \to N_r(B)^*A$ is continuous.

Proposition 4.3. If $g : G \to G$ defined by $g(a) = a^{-1}$ is continuous and A is a sub neargroup of G. Then its restriction $g_A : A \to A$ defined by $g_A(a) = a^{-1}$ is continuous.

Proof. Since g is continuous, g_A is continuous by proposition 3.3.
Proposition 4.4. Let G be a topological near group. Then every sub neargroup A of G with relative topology is a topological sub neargroup.

Proof. Since the restriction mapping $f : G \times G \rightarrow N_r(B)^*G, f_A : A \times A \rightarrow N_r(B)^*A$ and inverse mapping $g_A : A \rightarrow A$ defined by $g_A(a) = a^{-1}$ are continuous (by Proposition 4.2 and 4.3). Hence A is a topological sub neargroup of G. \hfill \square

Proposition 4.5. Let A_1 and A_2 are two topological sub neargroup of the topological near group G with $(N_r(B)^*A_1)|(N_r(B)^*A_2) = N_r(B)^*(A_1A_2)$. Then A_1A_2 is a topological sub neargroup of the topological near group G iff $A_1A_2 = A_2A_1$ where $A_1A_2 = \{a_1a_2|a_1 \in A_1, a_2 \in A_2\}$

Proof. \Rightarrow Let A_1A_2 be a topological sub neargroup of G. We prove that $A_1A_2 = A_2A_1$. Suppose that $a_1a_2 \in A_2A_1$ Then $(a_2a_1)^{-1} = a_1^{-1}a_2^{-1} \in A_1A_2$ since A_1A_2 is a sub neargroup then, $(a_1^{-1}a_2^{-1})^{-1} = a_2a_1 \in A_1A_2$ thus $A_2A_1 \subseteq A_1A_2$. Again suppose that $x \in A_1A_2$. Since A_1A_2 is a sub neargroup, $x^{-1} = a_1a_2 \in A_1A_2$, where $a_1 \in A_1$ and $a_2 \in A_2$. Thus $(x^{-1})^{-1} = a_2^{-1}a_1^{-1} \in A_2A_1$ so $A_1A_2 \subseteq A_2A_1$. Consequently $A_1A_2 = A_2A_1$.

\Leftarrow Let $A_1A_2 = A_2A_1$ we prove that A_1A_2 be a topological sub neargroup of G. Suppose that $a_1a_2, b_1b_2 \in A_1A_2$ Then

$$(a_1a_2)(b_1b_2) = a_1(a_2b_1)b_2 = a_1(b_1a_2)b_2 = (a_1b_1)(a_2b_2) \in N_r(B)^*A_1N_r(B)^*A_2$$

Since $N_r(B)^*A_1N_r(B)^*A_2 = N_r(B)^*(A_1A_2)$ we have $(a_1a_2)(b_1b_2) = N_r(B)^*(A_1A_2)$. Since associativity holds in A_1 and A_2, it holds good in A_1A_2 also $e \in A_1, e \in A_2 \Rightarrow e \cdot e = e \in A_1A_2$. Let $a_1a_2 \in A_1A_2$. Then, $(a_1a_2)^{-1} = a_2^{-1}a_1^{-1} \in A_2A_1$. But $A_1A_2 = A_2A_1$ so $(a_1a_2)^{-1} \in A_1A_2$. Thus A_1A_2 is a sub neargroup. \hfill \square

Definition 4.2. A topological sub neargroup N of a topological near group G is called a topological normal sub neargroup if, for all $a \in G$, $a \cdot N = N \cdot a$ where \cdot is the binary operation in G.

Proposition 4.6. A necessary and sufficient condition for a topological sub neargroup N of a topological near group G to be a topological normal sub neargroup is that

$$a \cdot N \cdot a^{-1} = N \text{ for all } a \in G$$

Proof. Suppose N is topological normal sub neargroup of G. By definition 4.7 $\forall a \in G$ we have $a \cdot N = N \cdot a$ This implies $(a \cdot N) \cdot a^{-1} = (N \cdot a)a^{-1}$

$a \cdot N \cdot a^{-1} = N(a \cdot a^{-1})$

$a \cdot N \cdot a^{-1} = N$

Suppose N is a topological sub neargroup of G and for all $a \in G$, $a \cdot N \cdot a^{-1} = N$. Then $(a \cdot N \cdot a^{-1}) \cdot a = N \cdot a$ i.e $a \cdot N = N \cdot a$. Thus N is a topological normal sub neargroup of G. \hfill \square

Proposition 4.7. If A_1 and A_2 are two topological normal sub neargroups of the topological near group G with $(N_r(B)^*A_1)|(N_r(B)^*A_2) = N_r(B)^*(A_1A_2)$. Let $A_1A_2 = A_2A_1$ then A_1A_2 is a topological normal sub neargroup of the topological near group G.

Proof. By proposition 4.5, A_1A_2 is a topological sub neargroup of G. Then sub neargroup $a(A_1A_2) = a(A_1)A_2 = (A_1a)A_2 \Rightarrow A_1(aA_2) = A_1(A_2a) = (A_1A_2)a, \forall a \in G$. Hence A_1A_2 is a topological sub neargroup of G. \hfill \square

Proposition 4.8. A necessary and sufficient condition for a topological sub neargroup N of the topological near group G to be a topological normal sub neargroup is that $a \cdot n \cdot a^{-1} \subseteq N$ for all $a \in G$ and $n \in N$.

54
Proof. Necessary that \(N \) is a topological normal sub neargroup of the topological near group \(G \). We have, \(a \cdot N \cdot a^{-1} = N \) for all \(a \in G \) For any \(n \in N, a \cdot n \cdot a^{-1} \in N \).

Sufficiency \(N \) is a topological sub neargroup of the topological near group \(G \). Suppose \(a \cdot n \cdot a^{-1} \in N \) for all \(a \in G \) and \(n \in N \). To prove that \(a \cdot N = N \cdot a \). Let \(x \in a \cdot N \). Therefore \(x = an \) for some \(n \in N \cdot x = (a \cdot n \cdot a^{-1})a \in N \cdot a, a \cdot N \subseteq N \cdot a \). Let \(x \in N \cdot a \). Therefore \(x = N \cdot a \) for some \(n \in N \). \(x = a(a^{-1} \cdot n \cdot a) = a(a^{-1} \cdot n(a^{-1})^{-1}) \in a \cdot N, N \cdot a \subseteq a \cdot N \), so \(N \cdot a = a \cdot N \). Thus \(N \) is a topological normal sub neargroup of \(G \). \(\square \)

5 Conclusion

In this paper the topological space is endowed with the algebraic structure called near group to form a new structure called topological near group. This structure is a generalization of topological group. Having obtained this structure, efforts have been made to get the similar existing algebraic results out of it. Wherever possible, some new hypothesis are introduced to get matching results as abstract algebra. Further scope is to define homomorphisms on this structure and develop its properties.

Acknowledgement

The first author thank UGC for supporting her by Rajiv Gandhi National Fellowship (RGNF),Grand number: F1-17.1/2016-17/RGNF-2015-17-SC-TAM-26487.

Competing Interests

Authors have declared that no competing interests exist.

References

© 2022 Maheswari and Ilango; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
https://www.sdiarticle5.com/review-history/94345