A Study on Generalized Tetranacci Numbers: Closed Form Formulas ∑n k=0 xkWk2 of Sums of the Squares of Terms

Main Article Content

Y¨uksel Soykan

Abstract

In this paper, closed forms of the sum formulas ∑n k=0 xkWk2 for the squares of generalized Tetranacci numbers are presented. We also present the sum formulas ∑n k=0 xkWk+1Wk; ∑n k=0 xkWk+2Wk; and ∑n k=0 xkWk+3Wk: As special cases, we give summation formulas of the of Tetranacci, Tetranacci-Lucas and some other fourth order linear recurrance sequences.

Keywords:
Sum of squares, fourth order recurrence, Tetranacci numbers, Tetranacci-Lucas numbers.

Article Details

How to Cite
Soykan, Y. (2020). A Study on Generalized Tetranacci Numbers: Closed Form Formulas ∑n k=0 xkWk2 of Sums of the Squares of Terms. Asian Research Journal of Mathematics, 16(10), 109-136. https://doi.org/10.9734/arjom/2020/v16i1030234
Section
Original Research Article

References

Hathiwala GS, Shah DV. Binet-type formula for the sequence of tetranacci numbers by alternate methods. Mathematical Journal of Interdisciplinary Sciences. 2017;6(1):37-48.

Melham RS. Some analogs of the identity Fn2 + Fn2+1 = F22n+1. Fibonacci Quarterly. 1999;305-311.

Natividad LR. On solving fibonacci-like sequences of fourth, fifth and sixth order. International Journal of Mathematics and Computing. 2013;3(2).

Singh B, Bhadouria P, Sikhwal O, Sisodiya K. A formula for tetranacci-like sequence. Gen. Math. Notes. 2014;20(2):136-141.

Waddill ME. Another generalized fibonacci sequence. Fibonacci Quarterly. 1967;5(3):209-227.

Waddill ME. The tetranacci sequence and generalizations. Fibonacci Quarterly. 1992;9-20.

Sloane NJA. The on-line encyclopedia of integer sequences. Available:http://oeis.org/

Soykan Y. A study of generalized fourth-order pell sequences. Journal of Scientific Research and Reports. 2019;25(1-2):1-18.

Soykan Y. On generalized 4-primes numbers. Int. J. Adv. Appl. Math. and Mech. 2020;7(4):20-33. (ISSN: 2347-2529)

Cerin Z. Formulae for sums of Jacobsthal–Lucas numbers. Int. Math. Forum. 2007;2(40):1969- ˇ1984.

Cerin Z. Sums of squares and products of Jacobsthal numbers. Journal of Integer Sequences. ˇ2007;10.

Gnanam A, Anitha B. Sums of squares Jacobsthal numbers. IOSR Journal of Mathematics.2015;11(6):62-64.

Kili¸c E, Ta¸s¸ci D. The linear algebra of the pell matrix. Bolet´ın de la Sociedad Matem´atica Mexicana. 2005;3(11).

Kılıc E. Sums of the squares of terms of sequence {un}. Proc. Indian Acad. Sci. Math. Sci.2008;118(1):27-41.

Soykan Y. Closed formulas for the sums of squares of generalized fibonacci numbers. Asian Journal of Advanced Research and Reports. 2020;9(1):23-39. Available:https://doi.org/10.9734/ajarr/2020/v9i130212

Soykan Y. Horadam numbers: Sum of the squares of terms of sequence. Int. J. Adv. Appl. Math. and Mech. In Presss.

Soykan Y. Formulae for the sums of squares of generalized tribonacci numbers: Closed form formulas of ∑n k=0 kWk2. IOSR Journal of Mathematics. 2020;16(4):1-18. DOI: 10.9790/5728-1604010118

Soykan Y. A study on the sums of squares of generalized fibonacci numbers: closed forms of the sum formulas ∑n k=0 kxkWk2 and ∑n k=1 kxkW−2k. Asian Journal of Advanced Research and Reports. 2020;12(1):44-67. DOI: 10.9734/AJARR/2020/v12i130280

Frontczak R. Sums of cubes over odd-index fibonacci numbers. Integers. 2018;18.

Soykan Y. Closed formulas for the sums of cubes of generalized fibonacci numbers: Closed formulas of and ∑n k=0 Wk3 and ∑n k=1 W−3k. Archives of Current Research International. 2020;20(2):58-69. DOI:10.9734/ACRI/2020/v20i230177

Soykan Y. A study on sums of cubes of generalized fibonacci numbers: Closed formulas of ∑n k=0 xkWk3 and ∑n k=1 xkW−3k . Preprints. 2020;2020040437. DOI:10.20944/preprints202004.0437.v1

Soykan Y. On sums of cubes of generalized fibonacci numbers: Closed formulas of ∑n k=0 kWk3 and ∑n k=1 kW−3k. Asian Research Journal of Mathematics. 2020;16(6):37-52. DOI:10.9734/ARJOM/2020/v16i630196

Soykan Y. A study on generalized fibonacci numbers: Sum formulas ∑n k=0 kxkWk3 and ∑n k=1 kxkW−3k for the cubes of terms. Earthline Journal of Mathematical Sciences. 2020;4(2):297-331. Available:https://doi.org/10.34198/ejms.4220.297331

Soykan Y. Generalized fibonacci numbers: Sum formulas of the squares of terms. MathLAB Journal. 2020;5:46-62.

Wamiliana, Suharsono, Kristanto PE. Counting the sum of cubes for lucas and gibonacci numbers. Science and Technology Indonesia. 2019;4(2):31-35.

Chen L, Wang X. The power sums involving fibonacci polynomials and their applications. Symmetry. 2019;11. DOI.org/10.3390/sym11050635

Frontczak R. Sums of powers of Fibonacci and Lucas numbers: A new bottom-up approach. Notes on Number Theory and Discrete Mathematics. 2018;24(2):94-103.

Prodinger H. Sums of powers of fibonacci polynomials. Proc. Indian Acad. Sci. Math. Sci. 2009;119(5):567-570.

Soykan Y. On generalized tetranacci numbers: Closed form formulas of the sum ∑n k=0 Wk2 of the squares of terms. International Journal of Advances in Applied Mathematics and Mechanics. 2020;8(1):15-26.

Raza Z, Riaz M, Ali MA. Some inequalities on the norms of special matrices with generalized tribonacci and generalized pell-padovan sequences. arXiv; 2015. Available:http://arxiv.org/abs/1407.1369v2

Soykan Y. A closed formula for the sums of squares of generalized tribonacci numbers. Journal of Progressive Research in Mathematics. 2020;16(2):2932-2941.

Soykan Y. On the sums of squares of generalized tribonacci numbers: Closed formulas of ∑n k=0 xkWk2. Archives of Current Research International. 2020;20(4):22-47. DOI: 10.9734/ACRI/2020/v20i430187

Prodinger H, Selkirk SJ. Sums of squares of tetranacci numbers: A generating function approach; 2019. Available:http://arxiv.org/abs/1906.08336v1

Schumacher R. How to sum the squares of the Tetranacci numbers and the Fibonacci m-step numbers. Fibonacci Quarterly. 2019;57:168-175.

Soykan Y. On generalized tetranacci numbers: Closed form formulas of the sum ∑n k=0 Wk2 of the squares of terms. Preprints. 2020;2020050453. DOI:10.20944/preprints202005.0453.v1

Soykan Y. Simson identity of generalized m-step fibonacci numbers. Int. J. Adv. Appl. Math. and Mech. 2019;7(2):45-56.

Davis PJ. Circulant matrices. JohnWiley&Sons, New York; 1979.

Shen S, Cen J. On the bounds for the norms of r-circulant matrices with the fibonacci and lucas numbers. Applied Mathematics and Computation. 2010;216:2891-2897.

Kızılate¸sC, Tuglu N. On the bounds for the spectral norms of geometric circulant matrices. Journal of Inequalities and Applications. 2016;2016(1). Article ID 312. DOI:10.1186/s13660-016-1255-1

PolatlıE. On the bounds for the spectral norms of r-circulant matrices with a type of catalan triangle numbers. Journal of Science and Arts. 2019;3(48):575-578.

Deveci O, Karaduman E, Campbell CM. The fibonacci-circulant sequences and their applications. Iranian Journal of Science and Technology Transaction A-Science. 2007;41(A4):1033-1038.

Deveci O. On the fibonacci-circulant p-sequences. Utilitas Mathematica. 2018;108:107-124.

He C, Ma J, Zhang K, Wang Z. The upper bound estimation on the spectral norm of r-circulant matrices with the fibonacci and lucas numbers. J. Inequal. Appl. 2015;2015:72.

Merikoski JK, Haukkanen P, Mattila M, Tossavainen T. On the spectral and frobenius norm of a generalized fibonacci r-circulant matrix. Special Matrices. 2018;6:23-36.

Raza Z, Ali MA. On the norms of some special matrices with generalized fibonacci sequence. J. Appl. Math. & Informatics. 2015;33(5-6):593-605.

Shen S. On the norms of circulant matrices with the (k,h)-fibonacci and (k,h)-lucas numbers. Int. J. Contemp. Math. Sciences. 2011;6(18):887-894.

Shen S. The spectral norms of circulant matrices involving (k,h)-fibonacci and (k,h)-lucas numbers. Int. J. Contemp. Math. Sciences. 2014;9(14):661-665.

Shen S, Cen J. On the spectral norms of r-circulant matrices with the k-fibonacci and k-lucas numbers. Int. J. Contemp. Math. Sciences. 2010;5(12):569-578.

Shi B. The spectral norms of geometric circulant matrices with the generalized k-horadam numbers. Journal of Inequalities and Applications. 2018;2018:14. Available:https://doi.org/10.1186/s13660-017-1608-4

Solak S. On the norms of circulant matrices with the fibonacci and lucas numbers. Applied Mathematics and Computation. 2005;160:125-132.

Solak S. Erratum to “on the norms of circulant matrices with the fibonacci and lucas numbers.” [Appl. Math. Comput. 2005;160:125-132. Applied Mathematics and Computation. 2007;190:1855-856.

Tuglu N, Kızılate¸s C. On the norms of circulant and r-circulant matrices with the hyperharmonic fibonacci numbers. Journal of Inequalities and Applications; 2015. Article ID 253, 2015. Available:http://dx.doi.org/10.1186/s13660-015-0778-1

Alptekin EG. Pell, pell-lucas ve modified pell sayıları ile tanımlı circulant ve semicirculant matrisler. Doctoral Dissertation, Sel¸cuk Universitesi Fen Bilimleri Enstit¨us¨u; 2005. ¨

Turkmen R, G¨okba¸sH. On the spectral norm of r-circulant matrices with the pell and pell-lucas numbers. J. Inequal. Appl. 2016;2016:65.

Radicic B. On k-circulant matrices involving the Jacobsthal numbers. Revista De La Union Matematica Argentina. 2019;60(2):431-442.

Uygun S¸. Some bounds for the norms of circulant matrices with the k-Jacobsthal and kJacobsthal lucas numbers. Journal of Mathematics Research. 2016;8(6):133-138.

Uygun S¸, Ya¸samalıS. On the bounds for the norms of circulant matrices with the Jacobsthal and Jacobsthal-lucas numbers. Notes on Number Theory and Discrete Mathematics. 2017;23(1):91-98.

Uygun S¸, Ya¸samalıS. On the bounds for the norms of r-circulant matrices with the Jacobsthal and Jacobsthal-lucas numbers. International Journal of Pure and Applied Mathematics. 2017;112(1):93-102.

Kızılate¸s C, Tuglu N. On the norms of geometric and symmetric geometric circulant matrices with the tribonacci number. Gazi University Journal of Science. 2018;31(2):555-567.

Raza Z, Ali MA. On the norms of circulant, r-circulant, semi-circulant and hankel matrices with tribonacci sequence. Arxiv; 2014. Available:http://arxiv.org/abs/1407.1369v1

Coskun A, Taskara N. On the some properties of circulant matrices with third order linear recurrent sequences. Mathematical Sciences and Applications E-Notes. 2018;6(1):12-18.

Pacheenburawana A, Sintunavarat W. On the spectral norms of r-circulant matrices with the padovan and perrin sequences. Journal of Mathematical Analysis. 2018;9(3):110-122.

Sintunavarat W. The upper bound estimation for the spectral norm of r-circulant and symmetric r-circulant matrices with the padovan sequence. J. Nonlinear Sci. Appl. 2016;9:92-101.

Ozko¸c A, Ardıyok E. Circulant and negacyclic matrices via tetranacci numbers. Honam ¨ Mathematical J. 2016;38(4):725-738.

Akbulak M, Otele¸s A. On the sum of Pell and Jacobsthal numbers by matrix Method. Bulletin ¨ of the Iranian Mathematical Society. 2014;40(4):1017-1025.

G¨okba¸s H, K¨ose H. Some sum formulas for products of pell and pell-lucas numbers. Int. J. Adv. Appl. Math. and Mech. 2017;4(4):1-4.

Otele¸s A, Akbulak M. A note on generalized k-pell numbers and their determinantal ¨ representation. Journal of Analysis and Number Theory. 2016;4(2):153-158.

Koshy T. Fibonacci and lucas numbers with applications. A Wiley-Interscience Publication, New York; 2001.

Koshy T. Pell and pell-lucas numbers with applications. Springer, New York; 2014.

Hansen RT. General identities for linear fibonacci and lucas summations. Fibonacci Quarterly. 1978;16(2):121-28.

Soykan Y. On summing formulas for generalized fibonacci and gaussian generalized fibonacci numbers. Advances in Research. 2019;20(2):1-15.

Soykan Y. Corrigendum: On summing formulas for generalized fibonacci and gaussian generalized fibonacci numbers. Advances in Research. 2020;21(10):66-82. DOI: 10.9734/AIR/2020/v21i1030253

Soykan Y. On summing formulas for Horadam numbers. Asian Journal of Advanced Research and Reports. 2020;8(1):45-61.

DOI: 10.9734/AJARR/2020/v8i130192

Soykan Y. Generalized fibonacci numbers: Sum formulas. Journal of Advances in Mathematics and Computer Science. 2020;35(1):89-104. DOI:10.9734/JAMCS/2020/v35i130241

Soykan Y. Generalized tribonacci numbers: Summing formulas. Int. J. Adv. Appl. Math. and Mech. 2020;7(3):57-76.

Soykan Y. On sum formulas for generalized tribonacci sequence. Journal of Scientific Research & Reports. 2020;26(7):27-52. ISSN: 2320-0227 DOI:10.9734/JSRR/2020/v26i730283

Frontczak R. Sums of tribonacci and tribonacci-lucas numbers. International Journal of Mathematical Analysis. 2018;12(1):19-24.

Parpar T. k’ncı Mertebeden Rek¨urans Ba˘gıntısının Ozellikleri ve Bazı Uygulamaları, Sel¸cuk ¨ ¨ Universitesi, Fen Bilimleri Enstit¨us¨u, Y¨uksek Lisans Tezi; 2011.

Soykan Y. Summing formulas for generalized tribonacci numbers. Universal Journal of Mathematics and Applications. 2020;3(1):1-11. ISSN 2619-9653 DOI: https://doi.org/10.32323/ujma.637876

Soykan Y. Summation formulas for generalized tetranacci numbers. Asian Journal of Advanced Research and Reports. 2019;7(2):1-12. DOI: 10.9734/ajarr/2019/v7i230170

Soykan Y. Matrix sequences of tribonacci and tribonacci-lucas numbers. Communications in Mathematics and Applications. 2020;11(2):281-295. DOI:10.26713/cma.v11i2.1102

Soykan Y. Sum formulas for generalized fifth-order linear recurrence sequences. Journal of Advances in Mathematics and Computer Science. 2019;34(5):1-14. Article no.JAMCS.53303 ISSN: 2456-9968 DOI: 10.9734/JAMCS/2019/v34i530224

Soykan Y. Linear summing formulas of generalized pentanacci and gaussian generalized pentanacci numbers. Journal of Advanced in Mathematics and Computer Science. 2019;33(3):1-14.

Soykan Y. On summing formulas of generalized hexanacci and gaussian generalized hexanacci numbers. Asian Research Journal of Mathematics. 2019;14(4):1-14. Article no.ARJOM.50727

Soykan Y. A study on sum formulas of generalized sixth-order linear recurrence sequences. Asian Journal of Advanced Research and Reports. 2020;14(2):36-48. DOI:10.9734/AJARR/2020/v14i230329