Numerical Solution of Delay Differential Equations via the Reproducing Kernel Hilbert Spaces Method

Main Article Content

Reham K. Alshehri
Banan S. Maayah
Abdelhalim Ebaid

Abstract

Delay differential equations (DDEs) are generalization of the ordinary differential equation (ODEs), which is suitable for physical system that also depends on the past data. In this paper, the Reproducing Kernel Hilbert Spaces (RKHS) method is applied to approximate the solution of a general form of first, second and third order fractional DDEs (FDDEs). It is a relatively new analytical technique. The analytical and approximate solutions are represented in terms of series in the RKHS.

Keywords:
Delay differential equations, reproducing kernel hilbert spaces, approximate solutions.

Article Details

How to Cite
Alshehri, R. K., Maayah, B. S., & Ebaid, A. (2020). Numerical Solution of Delay Differential Equations via the Reproducing Kernel Hilbert Spaces Method. Asian Research Journal of Mathematics, 16(11), 1-14. https://doi.org/10.9734/arjom/2020/v16i1130237
Section
Original Research Article

References

Diethelm K. Fractional differential equations, Theory and numerical treatment, Springer-Verlag, Berlin; 2000.

Diethelm K. The analysis of fractional differential equations, Springer-Verlag, Berlin; 2010.

Podlnbny I. Fractional differential equations, Academic Press, San Diego; 1999.

Oldham K. Spanner J. The fractional calculus, Academic Press, New York; 1974.

Kreysing E. Introductory function analysis, John Wily & Som, New York; 1978.

Rudin W. Functional analysis, 2nd edition, McGraw-Hill, Inc; New York (1991).

Cui M, Lin Y. Nonlinear numerical analysis in the reproducing kernel space, Nova Science, Publisher, New York; 2008.

Aronszajn N. Theory of reproducing kernels. Transactions of the American Mathematical Society. 1950;68(3):337-404.

Danid A. Reproducing kernel space and applications, Springer, New York; 2003.

Yang LH, Lin Y. Reproducing kernel methods for solving linear initial-boundary-value problems. Electronic Journal of differential equations. 2008;(29):1-11.

Yao H. The research of algorithms for some singular differential equations of higher even-order, Ph.D.

Panlsen V. An introduction & the theory of reproducing kernel Hilbert space, lecture notes, University of Houston, Texas.

Moradi E, Yusf A, Abdollahzadeh A, Tila E. New implementation of reproducing kernel hilbert space method for solving a class of third-order differential equations. Journal of Mathematics and Computer Science. 2014;12:253-262.

Wang Z. A numerical method for delayed fractional-order differential equations. J. Appl. Math. 2013;Article ID 256071:7.

Evans DJ, Raslan KR. The Adomian decomposition method for solving delay differential equation. International Journal of Computer Mathematics. 2005;82(1):49-54.

El-Safty A, Salim MS, El-Khatib MA. Convergence of the spline function for delay dynamic system. International Journal of Computer Mathematics. 2003;80(4):509-518.

Bhrawy AH, Assas LM, Tohidi E, Alghamdi MA. A Legendre-Gauss collocation method for neutral functional differential equations with proportional delays. Adv. Differ. Equ. 2013;63(2013). Available:https://doi.org/10.1186/1687-1847-2013-63.

Lv X, Gao Y. The RKHSM for solving neutral functional differential equations with proportional delays. Mathematical Methods in the Applied Sciences. 2013;36(6):642-649.

Wang W, Zhang Y, Li S. Stability of continuous Runge-Kutta-type methods for nonlinear neutral delay-differential equations. Applied Mathematical Modelling. Simulation and Computation for Engineering and Environmental Systems. 2009;33(8):3319-3329.

Balamuralitharan S, Rajasekaran S. Determining the existence of positive real roots in linear delay differential equation using discontinuous real polynomials, International Journal of Pure and Applied Mathematics. 2012;78 (1):105-125.

Abel NH. Solution de quelques a l'aide d'integrales defines; Ocuvers Completes. Grondahl, Christiania, Norway. 1881;1.

Laurent H. Sur le calcul des derives a indices quelconques; Nouvelles annales de mathématiques. 1884;3:240-252.

Heaviside O. Electrical Papers, Macmillan; London; 1892.

Gemant A. A method of analyzing experimental result obtained from elastoviscous bodies. Physics. 1936;7:311-317.

Ross B. Proceeding of the International Conference on Fractional Calculus and Its Applications. Springer, New York; 1975.

Miller K, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley&Sons, Inc., New York; 1993.

Sahihi H, Abbasbandy S, Allahviranloo T. Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a dela. Appl. Math. Comput. 2019;361:583–598.

Abu Arqub O, Maayah B. Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense. Chaos Soliton & Fract. 2019;125:163–170.

Geng FZ. Numerical methods for solving Schröinger equations in complex reproducing kernel Hilbert spaces. Math. Sci. 2020;14:293–299. Available:https://doi.org/10.1007/s40096-020-00337-6.

Li XY, Wu BY. A new kernel functions based approach for solving 1-D interface problems, Appl. Math. Comput. 2020;380:125276.

Maayah B, Bushnaq S, Momani S, Abu-Arqub O. Iterative multistep reproducing kernel hilbert space method for solving strongly nonlinear oscillators. Advances in Mathematical Physics. 2014;Article ID 758195:7.

Sherif MN, Abouelfarag I, Amer TS. Numerical solution of fractional delay differential equations using Spline functions, Int. J. Pure and Appl. Math. 2014;90 (1):73-83.

Saeed U, Rehman M. Hermite Wavelet method for fractional delay differential equations. Journal of Difference Equations. 2014;Article ID 359093:8.

Khader MM, Hendy AS. The approximate and exact solutions of the fractional-order delay differential equations using Legendre-Pseudo spectral, International Journal of Pure and Applied Mathematics. 2012;74(3):287-297.