A Study on the Fourth Fundamental Form of the Factorable Hypersurface

Main Article Content

Erhan Güler

Abstract

We study the fourth fundamental form of the factorable hypersurface in the four dimensional Euclidean space . We obtain I, II, III, and IV fundamental forms of a factorable hypersurface.

Keywords:
Four dimensional space, factorable hypersurface, fourth fundamental form.

Article Details

How to Cite
Güler, E. (2020). A Study on the Fourth Fundamental Form of the Factorable Hypersurface. Asian Research Journal of Mathematics, 16(11), 24-30. https://doi.org/10.9734/arjom/2020/v16i1130239
Section
Original Research Article

References

Arslan K, Bayram B, Bulca B, Öztürk G. On translation surfaces in 4-dimensional Euclidean space. Acta Comm. Univ. Tartuensis Math. 2016;20(2):123–133.

Aydın ME. Constant curvature factorable surfaces in 3-dimensional isotropic space. J. Korean Math. Soc. 2018;55(1):59–71.

Aydın ME, Öğrenmiş AO. Linear Weingarten factorable surfaces in isotropic spaces. Stud. Univ. Babeş-Bolyai Math. 2017;62(2):261–268.

Aydın ME, Külahcı M, Öğrenmiş AO. Non-zero constant curvature factorable surfaces in pseudo-Galilean space, Comm. Korean Math. Soc. 2018;33(1):247–259.

Aydın ME, Öğrenmiş AO, Ergüt M. Classification of factorable surfaces in the Pseudo-Galilean 3-space. Glasnik Matematicki. 2015;50(70):441–451.

Baba-Hamed C, Bekkar M, Zoubir H. Translation surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying Δri=λiri. Int. J. Math. Analysis. 2010;4(17):797–808.

Bekkar M, Senoussi B. Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying Δri=λiri. J. Geom. 2012;103(1):17–29.

Bulca B, Arslan K, Bayram BK, Öztürk G. Spherical product surface in E^4. Ann. St. Univ. Ovidius Constanta. 2012;20(1):41–54.

Büyükkütük S, Öztürk G. Spacelike factorable surfaces in four-dimensional Minkowski space. Bull. Math. Anal. Appl. 2017;9(4):12–20.

Dillen F, Verstraelen L, Zafindratafa G. A generalization of the translation surfaces of Scherk differential geometry in honor of Radu Rosca: Meeting on pure and applied differential geometry, Leuven, Belgium. 1989, KU Leuven, Department Wiskunde. 1991;107–109.

Dillen F, Van de Woestyne I, Verstraelen L, Walrave JT. The surface of Scherk in E^3: A special case in the class of minimal surfaces defined as the sum of two curves. Bull. Inst. Math. Acad. Sin. 1998;26:257–267.

Inoguchi J, López R, Munteanu M. Minimal translation surfaces in the Heisenberg group Nil3. Geom Dedicata. 2012;161(1):221–231.

Jiu L, Sun H. On minimal homothetical hypersurfaces. Colloq. Math. 2007;109(2):239–249.

Liu H. Translation surfaces with dependent Gaussian and mean curvature in 3-dimensional spaces. J. Northeast Univ. Tech. 1993;14(1):88–93.

Liu H. Translation surfaces with constant mean curvature in 3-dimensional spaces. J. Geom. 1999;64: 141–149.

Lopez R, Moruz M. Translation and homothetical surfaces in Euclidean space with constant curvature. J. Korean Math. Soc. 2015;52(3):523–535.

Meng H, Liu H. Factorable surfaces in 3-Minkowski space. Bull. Korean Math. Soc. 2009;46(1):155–169.

Moruz M, Munteanu M. Minimal translation hypersurfaces in E^4. J. Math. Anal. Appl. 2016;439:798–812.

Munteanu M., Nistor A.I. On the geometry of the second fundamental form of translation surfaces in E^3. Houston J. Math. 37, (2011) 1087–1102.

Munteanu M., Palmas O., Ruiz-Hernandez G. Minimal translation hypersurfaces in Euclidean space. Mediterr. J. Math. 13, (2016) 2659–2676.

Scherk H.F. Bemerkungen ber die Kleinste fläche innerhalb Gegebener Grenzen, J. R. Angew.Math., 13, (1835) 185–208.

Turhan E, Altay G. Maximal and minimal surfaces of factorable surfaces in Heis3. Int. J. Open Probl. Comput. Sci. Math. 2010;3(2):200–212.

Van de Woestyne I. Minimal homothetical hypersurfaces of a semi-Euclidean space. Results Math. 1995;27(3-4):333–342.

Yu Y, Liu H. The factorable minimal surfaces. Proceedings of the Eleventh International Workshop on Differential Geometry. Kyungpook Nat. Univ., Taegu. 2007;33-39.

Zong P, Xiao L, Liu HL. Affine factorable surfaces in three-dimensional Euclidean space. (Chinese) Acta Math. Sinica (Chin. Ser.). 2015;58(2):329–336.