The Principal Curvatures and the Third Fundamental Form of Dini-Type Helicoidal Hypersurface in 4-Space
Article Sidebar
Published
Dec 30, 2020
    Page:
62-68
Main Article Content
Erhan G¨uler
Bartın University, Faculty of Sciences, Department of Mathematics, 74100 Bartın, Turkey
Abstract
We consider the principal curvatures and the third fundamental form of Dini-type helicoidal hypersurface D(u, v, w) in the four dimensional Euclidean space E4. We find the Gauss map e of helicoidal hypersurface in E4. We obtain characteristic polynomial of shape operator matrix S. Then, we compute principal curvatures ki=1;2;3, and the third fundamental form matrix III of D.
Keywords:
Four dimensional, Dini-type helicoidal hypersurface, Gauss map, principal curvatures, the third fundamental form.
Article Details
How to Cite
Section
Original Research Article
References
Arvanitoyeorgos A, Kaimakamis G, Magid M. Lorentz hypersurfaces in E4 1 satisfying ∆H = αH. Illinois J. Math. 2009;53(2):581-590.
Bour E. Theorie de la deformation des surfaces. J. de l. Ecole Imperiale Polytechnique. 1862;22(39):1-148.
Chen BY. Total mean curvature and submanifolds of finite type. World Scientific, Singapore; 1984.
Cheng QM, Wan QR. Complete hypersurfaces of R4 with constant mean curvature. Monatsh. Math. 1994;118(3-4):171-204.
Choi M, Kim YH. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 2001;38:753-761.
Dillen F, Pas J, Verstraelen L. On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 1990;13:10-21.
Do Carmo M, Dajczer M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 1982;34:351-367.
Ferrandez A, Garay OJ, Lucas P. On a certain class of conformally at Euclidean hypersurfaces. Proc. of the Conf. in Global Analysis and Global Differential Geometry, Berlin; 1990.
Ganchev G, Milousheva V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 2014;38:883-895.
G¨uler E, Hacısaliho˘glu HH, Kim YH. The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space. Symmetry. 2018;10(9):1-11.
G¨uler E, Ki¸si O. Dini-type helicoidal hypersurfaces with timelike axis in Minkowski 4-space ¨ E4 1. Mathematics. 2019;7(2)205:1-8.
G¨uler E, Magid M, Yaylı Y. Laplace Beltrami operator of a helicoidal hypersurface in four space. J. Geom. Sym. Phys. 2016;41:77-95.
Gler E, Turgay NC. Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space. Mediterr. J. Math. 16(3) 66, (2019) 1–16.
G¨uler E, Yaylı Y, Hacısaliho˘glu HH. Bour’s theorem on the Gauss map in 3-Euclidean space. Hacettepe J. Math. 2010;39:515-525.
Hasanis Th, Vlachos Th. Hypersurfaces in E4 with harmonic mean curvature vector field. Math. Nachr. 1995;172:145-169.
Kim DS, Kim JR, Kim YH. Cheng-Yau operator and Gauss map of surfaces of revolution. Bull. Malays. Math. Sci. Soc. 2016;39:1319-1327.
Kim YH, Turgay NC. Surfaces in E4 with L1-pointwise 1-type Gauss map. Bull. Korean Math. Soc. 2013;50(3):935-949.
Lawson HB. Lectures on minimal submanifolds. Rio de Janeiro. 1973;1.
Magid M, Scharlach C, Vrancken L. Affine umbilical surfaces in R4. Manuscripta Math. 1995;88:275-289.
Moore C. Surfaces of rotation in a space of four dimensions. Ann. Math. 1919;21:81-93.
Moore C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 1920;26:454-460.
Moruz M, Munteanu MI. Minimal translation hypersurfaces in E4. J. Math. Anal. Appl. 2016;439:798-812.
Scharlach C. Affine geometry of surfaces and hypersurfaces in R4. Symposium on the Differential Geometry of Submanifolds, France. 2007;251-256.
Senoussi B, Bekkar M. Helicoidal surfaces with ∆Jr = Ar in 3-dimensional Euclidean space. Stud. Univ. Babe-Bolyai Math. 2015;60(3):437-448.
Takahashi T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan. 1966;18:380- 385.
Verstraelen L, Walrave J, Yaprak S¸. The minimal translation surfaces in Euclidean space. Soochow J. Math. 1994;20(1):77-82
Bour E. Theorie de la deformation des surfaces. J. de l. Ecole Imperiale Polytechnique. 1862;22(39):1-148.
Chen BY. Total mean curvature and submanifolds of finite type. World Scientific, Singapore; 1984.
Cheng QM, Wan QR. Complete hypersurfaces of R4 with constant mean curvature. Monatsh. Math. 1994;118(3-4):171-204.
Choi M, Kim YH. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 2001;38:753-761.
Dillen F, Pas J, Verstraelen L. On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 1990;13:10-21.
Do Carmo M, Dajczer M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 1982;34:351-367.
Ferrandez A, Garay OJ, Lucas P. On a certain class of conformally at Euclidean hypersurfaces. Proc. of the Conf. in Global Analysis and Global Differential Geometry, Berlin; 1990.
Ganchev G, Milousheva V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 2014;38:883-895.
G¨uler E, Hacısaliho˘glu HH, Kim YH. The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space. Symmetry. 2018;10(9):1-11.
G¨uler E, Ki¸si O. Dini-type helicoidal hypersurfaces with timelike axis in Minkowski 4-space ¨ E4 1. Mathematics. 2019;7(2)205:1-8.
G¨uler E, Magid M, Yaylı Y. Laplace Beltrami operator of a helicoidal hypersurface in four space. J. Geom. Sym. Phys. 2016;41:77-95.
Gler E, Turgay NC. Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space. Mediterr. J. Math. 16(3) 66, (2019) 1–16.
G¨uler E, Yaylı Y, Hacısaliho˘glu HH. Bour’s theorem on the Gauss map in 3-Euclidean space. Hacettepe J. Math. 2010;39:515-525.
Hasanis Th, Vlachos Th. Hypersurfaces in E4 with harmonic mean curvature vector field. Math. Nachr. 1995;172:145-169.
Kim DS, Kim JR, Kim YH. Cheng-Yau operator and Gauss map of surfaces of revolution. Bull. Malays. Math. Sci. Soc. 2016;39:1319-1327.
Kim YH, Turgay NC. Surfaces in E4 with L1-pointwise 1-type Gauss map. Bull. Korean Math. Soc. 2013;50(3):935-949.
Lawson HB. Lectures on minimal submanifolds. Rio de Janeiro. 1973;1.
Magid M, Scharlach C, Vrancken L. Affine umbilical surfaces in R4. Manuscripta Math. 1995;88:275-289.
Moore C. Surfaces of rotation in a space of four dimensions. Ann. Math. 1919;21:81-93.
Moore C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 1920;26:454-460.
Moruz M, Munteanu MI. Minimal translation hypersurfaces in E4. J. Math. Anal. Appl. 2016;439:798-812.
Scharlach C. Affine geometry of surfaces and hypersurfaces in R4. Symposium on the Differential Geometry of Submanifolds, France. 2007;251-256.
Senoussi B, Bekkar M. Helicoidal surfaces with ∆Jr = Ar in 3-dimensional Euclidean space. Stud. Univ. Babe-Bolyai Math. 2015;60(3):437-448.
Takahashi T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan. 1966;18:380- 385.
Verstraelen L, Walrave J, Yaprak S¸. The minimal translation surfaces in Euclidean space. Soochow J. Math. 1994;20(1):77-82