The Existence and Uniqueness of the Solution of a Diusive Predator-Prey Model with Omnivory and General Nonlinear Functional Response

Main Article Content

Wensheng Yang

Abstract

In this work, we consider a three species modified Lesie-Gower food web model with general  nonlinear functional response and omnivory which is defined as feeding on more than one trophic level. The carrying capacity of the model is proportional to the population size of the biotic resource plus a const. The main objective of this paper is to investigate the existence and  uniqueness of the solution of this model. It is shown that the omnivory has important influence on the existence and uniqueness of the solution of the model.

Keywords:
Food web model, Biotic resource, Omnivory, Upper-lower solution, Semigroup.

Article Details

How to Cite
Yang, W. (2021). The Existence and Uniqueness of the Solution of a Diusive Predator-Prey Model with Omnivory and General Nonlinear Functional Response. Asian Research Journal of Mathematics, 17(1), 14-25. https://doi.org/10.9734/arjom/2021/v17i130261
Section
Original Research Article

References

Tanner JT. The stability and the intrinsic growth rates of prey and predator populations. Ecology. 1975;56:855-867.

Cui R, Shi J, Wu B. Strong Allee effect in a diffusive predator-prey system with a protection zone. J. Differential Equations. 2014;256:108-129.

Saez E, Gonzalez-Olivares E. Dynamics of a predator-prey model. SIAM J. Appl. Math. 1999;59:1867-1878.

Li H, Li Y, Yang W. Existence and asymptotic behavior of positive solutions for a one-prey and twocompeting- predators system with diffusion. Nonlinear Anal. RealWorld Appl. 2016;27:261- 282.

Yang W. Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response. Nonlinear Anal. Real World Appl. 2013;14:1323-1330. 23 Yang; ARJOM, 17(1): 14-25, 2021; Article no.ARJOM.65192

Hamizah M. Safuan, Isaac N. Towers, Zlatko Jovanoski, Harvinder S. Sidhu. On travelling wave solutions of the diffusive Leslie-Gower model. Appl. Math. Comput. 2016;274:362-371.

Shi H, Li W, Lin G. Positive steady states of a diffusive predator-prey system with modified Holling-Tanner functional response. Nonlinear Anal. Real World Appl. 2010;11:3711-3721.

Wang J, Wei J, Shi J. Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems. J. Differential Equations. 2016;260(4):3495-3523.

Wang J, Zhang L. Invasion by an inferior or superior competitor: A diffusive competition model with a free boundary in a heterogeneous environment. J. Math. Anal. Appl. 2015;424:201-220.

Gilpin ME. Spiral chaos in a predator-prey model. Amer. Nat.1979;113(2):306-308.

Hastings A, Powell T. Chaos in a three-species food chain. Ecology. 1991;72(3):896-903.

Hsu SB, Hubbell SP, Waltman P. Competing predators. SIAM J. Appl. Math.1978;35(4):617- 625.

Krikorian N. The Volterra model for three species predator-prey systems: Boundedness and stability. J. Math. Biol. 1979;7(2):117-132.

Safuan HM, Sidhu HS, Jovanoski Z, Towers TN. Impacts of biotic resource enrichment on a predator-prey population. Bull. Math. Biol. 2013;75:1798-1812.

Li H. Asymptotic behavior and multiplicity for a diffusive Leslie-Gower predator-prey system with Crowley-Martin functional response. Comput. Math. Appl. 2014;68:693-705.

Li S, Wu J, Nie H. Steady-state bifurcation and Hopf bifurcation for a diffusive Leslie-Gower predator-prey model. Comput. Math. Appl.2015;70:3043-3056.

Yan XP, Zhang CH. Stability and turing instability in a diffusive predator-prey system with Beddington-DeAngelis functional response. Nonlinear Anal. Real World Appl. 2014;20:1-13.

Zhou J. Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response. Z. Angew. Math. Phys.2014;65(1):1-18. [19] Ni W, Wang M. Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey. J. Differential Equations. 2016;261:4244-4274.

Peng R, Shi J,Wang M. On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law. Nonlinearity. 2008;21(7):1471-1488.

Du Y, Shi J. Allee effect and bistability in a spatially heterogeneous predator-prey model. Trans. Amer. Math. Soc. 2007;359(9):4557-4593.

Pang PYH, Wang M. Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion. Proc. Lond. Math. Soc. 2004;88(1):135-157.

Yi F, Wei J, Shi J. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differential Equations. 2009;246(5):1944-1977.

Turing A. The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. (part B). 1953;237:37- 72.

Xu R. A reaction diffusion predator-prey model with stage structure and nonlocaldelay. Appl. Math. Comput. 2006;175:984-1006.

Peng R, Wang MX. Note on a ratio-dependent predator-prey system with diffusion. Nonlinear Anal. Real World Appl. 2006;7:1-11.

Ko W, Ryu K. Non-constant positive steady-states of a diffusive predator-prey system in homogeneous environment. J. Math. Anal. Appl. 2007;327:539-549.

Tian Y,Weng P. Stability analysis of diffusive predator-prey model with modified Leslie-Gower and Holling-type III schemes. Appl. Math. Comput. 2011;218:3733-3745. 24 Yang; ARJOM, 17(1): 14-25, 2021; Article no.ARJOM.65192

Shi HB, Li Y. Global asymptotic stability of a diffusive predator-prey model with ratiodependent functional response. Appl. Math. Comput. 2015;250:71-77.

Zhang X, Huang Y, Weng P. Permanence and stability of a diffusive predator-prey model with disease in the prey. Comput. Math. Appl. 2014;68:1431-1445.

Jau GC. The problem of the nonlinear diffusive predator-prey model with the same biotic resource. Nonlinear Anal. Real World Appl. 2017;34:188-200.

Guin LN, Acharya S. Pattern dynamics of a reaction-diffusion predator-prey system with both refuge and harvesting. Nonlinear Dyn. 2017;88:1501-1533.

Djilali S. Impact of prey herd shape on the predator-prey interaction. Chaos, Solit. Fract. 2019;120:139-148.

Djilali S, Bentout S. Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior. Acta Appl. Math. 2020;169:125-143.

Djilali S. Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition. Math. Meth. Appl. Scien. 2020;43(5):2233-2250.

Djilali S. Spatiotemporal patterns induced by cross-diffusion in predator-prey model with prey herd shape effect. International J. of Biomath. 2020;13(4):2050030.

Hsu SB, Ruan SG, Yang TH. Analysis of three species Lotka-Volterra food web models with omnivory. J. Math. Anal. Appl. 2015;426:659-687.

Georgescu P, Morosanu G. Impulsive pertubations of a three-trophic prey-dependent food chain system. Math. Comput. Modelling. 2008;48(7-8):975-997.

Pao CV. Nonlinear parabolic and elliptic equations. New York; 1992.

Engel KJ, Nagel R. One-Parameter semigroups for linear evolution equations. Springer-Verlag, New York; 2000.

Pazy A. Semigroups of linear operators and applications to partial differential equations, springer-verlag, New York; 1983.