Asian Research Journal of Mathematics

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2021 - Volume 17 [Issue 8]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Picard and Adomian Solutions of a Nonlocal Cauchy Problem of a Delay Dierential Equation

  • E. A. A. Ziada

Asian Research Journal of Mathematics, Page 30-43
DOI: 10.9734/arjom/2021/v17i830321
Published: 7 October 2021

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


In this paper, two methods are used to solve a nonlocal Cauchy problem of a delay differential equation; Adomian decomposition method (ADM) and Picard method. The existence and uniqueness of the solution are proved. The convergence of the series solution and the error analysis are studied.


Keywords:
  • Nonlocal cauchy problem
  • existence
  • uniqueness
  • error analysis
  • Adomian method
  • Picard method
  • Full Article - PDF
  • Review History

How to Cite

Ziada, E. A. A. (2021). Picard and Adomian Solutions of a Nonlocal Cauchy Problem of a Delay Dierential Equation. Asian Research Journal of Mathematics, 17(8), 30-43. https://doi.org/10.9734/arjom/2021/v17i830321
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Augustynowicza AH, Leszczy and Walterb W. On some nonlinear ordinary dierential equations with advanced arguments Nonlinear Analysis. 2003;53:495-505.

Boucherif A. First-order dierential inclusions with nonlocal initial conditions. Applied Mathematics Letters. 2002;15:409-414.

Boucherif A. Nonlocal Cauchy problems for rst-order multivalued dierential equations, Electronic Journal of Dierential Equations. 2002;47:1-9.

Boucherif A, Precup R. On the nonlocal initial value problem for rst order dierential equations. Fixed Point Theory. 2003;4(2):205-212.

Boucherif A. Semilinear evolution inclusions with nonlocal conditions. Applied Mathematics Letters. 2009;22:1145-1149.

Benchohra M, Gatsori EP, Ntouyas SK. Existence results for seme-linear integrodierential inclusions with nonlocal conditions. Rocky Mountain J. Mat. 2004;34:3. Fall

Benchohra M, Hamani S, Ntouyas S. Boundary value problems for dierential equations with fractional order and nonlocal conditions. Nonlinear Analysis. 2009;71:2391-2396.

Deimling K. Nonlinear functional analysis. Springer-Verlag; 1985.

Dugundji J, Granas A. Fixed Point Theory, Monograe Mathematyczne, PWN, Warsaw; 1982.

El-Sayed AMA, Sh. A. Abd El-Salam. On the stability of a fractional order dierential equation with nonlocal initial condtion. EJQTDE. 2008;9(29):1-8.

El-Sayed AMA, Bin-Taher EO. A nonlocal problem of an arbitrary (fractional) orders dierential equation. Alexandria J. of Math. 2010;1(2):59-62.

EGatsori SK, Ntouyas and Scas YG. On a nonlocal cauchy problem for dierential inclusions. Abstract and Applied Analysis. 2004;425-434.

Guerekata GMA. Cauchy problem for some fractional abstract dierential equation with non local conditions. Nonlinear Analysis. 2009;70:1873-1876.

Hamani SS, Benchora M, Graef JR. Existence results for boundary-value problems with nonlinear fractional dirential inclusions and integral conditions. EJQTDE. 2010;20:1-16.

Aykut A, Yildiz B. On a boundary value problem for a dierential equation with variant retarded argument. Applied Mathematics and Computation. 1998;93:63-71.

Seda _I Gret Araz, Arzu Aykut. On approximate solution of a boundary value problem with retarded argument. Erzincan University Journal of Science and Technology. 2014;7:93-103.

Adomian G. Solving frontier problems of physics: The decomposition method, Kluwer; 1995.

Adomian G. Stochastic system, academic press; 1983.

Adomian G. Nonlinear stochastic operator equations, Academic Press, San Diego; 1986.

Adomian G. Nonlinear stochastic systems: Theory and Applications to Physics, Kluwer; 1989.

Abbaoui K, Cherruault Y. Convergence of Adomian's method applied to dierential equations. Computers Math. Applic. 1994;28:103-109.

Cherruault Y, Adomian G, Abbaoui K, Rach R. Further remarks on convergence of decomposition method. International J. of Bio-Medical Computing. 1995;38:89-93.

Shawaghfeh NT. Analytical approximate solution for nonlinear fractional dierential equations. J. Appl. Math. Comput. 2002;131:517-529.

El-kalla I L. Convergence of the Adomian method applied to a class of nonlinear integral equations. Applied Mathematics Letters. 2008;21:372-376.
  • Abstract View: 294 times
    PDF Download: 165 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Asian Research Journal of Mathematics. All rights reserved.