Fixed Point Theorem for (\(\Phi\), \(\mathfrak{F}\))– Expansive Mappings in Cone b-Metric Spaces over Banach Algebra

R. Jahir Hussain

Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapplli-620020, Tamil Nadu, India.

K. Maheshwaran

Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapplli-620020, Tamil Nadu, India.

*Author to whom correspondence should be addressed.


Abstract

The class functions and are used in this paper to establish the notion of fixed point theorem on expansive mappings. The primary result is a generalization of the fixed point theorem for (\(\Phi\), \(\mathfrak{F}\)) expansive mappings on cone -metric spaces over Banach algebra \(\mathfrak{V}\). Investigated are the fixed point's criteria for existence and uniqueness. Additionally, provide an illustration.

Keywords: Cone b-Metric space, Banach algebra, expansive mapping


How to Cite

Hussain, R. J., & Maheshwaran, K. (2023). Fixed Point Theorem for (\(\Phi\), \(\mathfrak{F}\))– Expansive Mappings in Cone b-Metric Spaces over Banach Algebra. Asian Research Journal of Mathematics, 19(5), 24–36. https://doi.org/10.9734/arjom/2023/v19i5656

Downloads

Download data is not yet available.

References

Czerwik S. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis. 1993;1:5–11.

Czerwik S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti del Seminario Matematico e Fisico Universita di Modena. 1998;46(2):263–276.

Wang SZ, Li BY, Gao ZM, Iseki K. Some fixed point theorems for expansion mapping, Mathematica Japonica. 1984;29:631-636.

Aage CT, Salunke JN. Some fixed point theorems for expansion onto mappings on cone metric space, Acta Mathematica Sinica English Series. 2011;27(6):1101-1106.

Daffer PZ, Kaneko H. On expansive mappings. Mathematica Japonica. 1992;37:733-735.

Kadelburg Z, Radenovic S. A note on various types of cones and fixed point results in cone metric space. Asian Journal Mathematics Applications; 2013.

Dhamodharan D, and Krishnakumar R. Common fixed points of (